高流量鼻腔插管(HFNC)为批判性儿童提供了非侵入性呼吸支持,这些儿童可能比其他非侵入性(NIV)技术更容易耐受。及时预测HFNC故障可以提供增加呼吸支持的指示。这项工作开发并比较了机器学习模型来预测HFNC故障。从2010年1月到2月20日至2月的患者EMR进行了患者EMR进行了回顾性研究。培训了长期内记忆(LSTM)模型,以产生连续预测HFNC故障。在HFNC启动后的各个时间使用接收器操作曲线(AUROC)下的区域评估性能。还评估了HFNC启动后2小时后预测的敏感性,特异性,正面和消极预测值(PPV,NPV)。这些指标也以主要呼吸诊断的群组计算。 834 HFNC试验[455培训,173次验证,206检验]符合纳入标准,其中175 [103,30,42](21.0%)升级至NIV或插管。具有转移学习的LSTM模型通常比LR模型更好地执行,最佳LSTM模型在启动后2小时实现0.78,VS 0.66的AUTOC。使用EMR数据培训的机器学习模型能够在发起24小时内识别出现在HFNC中失败的风险的风险。 LSTM模型结合了转移学习,输入数据持久性和合奏显示的性能提高了LR和标准LSTM模型。
translated by 谷歌翻译
Neural networks struggle in continual learning settings from catastrophic forgetting: when trials are blocked, new learning can overwrite the learning from previous blocks. Humans learn effectively in these settings, in some cases even showing an advantage of blocking, suggesting the brain contains mechanisms to overcome this problem. Here, we build on previous work and show that neural networks equipped with a mechanism for cognitive control do not exhibit catastrophic forgetting when trials are blocked. We further show an advantage of blocking over interleaving when there is a bias for active maintenance in the control signal, implying a tradeoff between maintenance and the strength of control. Analyses of map-like representations learned by the networks provided additional insights into these mechanisms. Our work highlights the potential of cognitive control to aid continual learning in neural networks, and offers an explanation for the advantage of blocking that has been observed in humans.
translated by 谷歌翻译
内镜窦和头骨基础手术(Essbss)是一个具有挑战性和潜在的危险的外科手术,客观技能评估是提高手术训练有效性的关键组成部分,重新​​验证外科医生的技能,并降低手术创伤和并发症手术室的速度。由于外科手术的复杂性,操作风格的变化,以及新的外科技能的快速发展,外科技能评估仍然是一个具有挑战性的问题。这项工作提出了一种新颖的高斯过程学习的启发式自动客观外科手术技能评估方法。不同于经典的外科技能评估算法,所提出的方法1)利用外科仪器相对运动中的运动学特征,而不是使用特定的外科任务或统计数据实时评估技能; 2)提供信息丰富的反馈,而不是总结分数; 3)能够逐步从新数据逐步学习,而不是根据固定的数据集。该方法将仪器运动投射到内窥镜坐标中以减少数据维度。然后,它提取投影数据的运动学特征,并学习外科技能水平与高斯过程学习技术的特征之间的关系。该方法在全内镜颅底和尸体上的鼻窦手术中核实。这些手术具有不同的病理学,需要不同的治疗并具有不同的复杂性。实验结果表明,该方法达到了100 \%的预测精度,用于完整的外科手术和90 \%的实时预测评估精度。
translated by 谷歌翻译
贝叶斯脑假设假设大脑根据贝叶斯定理进行准确地运行统计分布。突触前囊泡释放神经递质的随机性失效可以让大脑从网络参数的后部分布中样本,被解释为认知不确定性。尚未显示出先前随机故障可能允许网络从观察到的分布中采样,也称为炼肠或残留不确定性。两个分布的采样使概率推断,高效搜索和创造性或生成问题解决。我们证明,在基于人口码的神经活动的解释下,可以用单独的突触衰竭来表示和对两种类型的分布进行分布。我们首先通过突触故障和横向抑制来定义生物学限制的神经网络和采样方案。在该框架内,我们派生基于辍学的认知不确定性,然后从突触功效证明了允许网络从任意,由接收层表示的分布来释放概率的分析映射。其次,我们的结果导致了本地学习规则,突触将适应其发布概率。我们的结果表明,在生物学限制的网络中,仅使用本地学习的突触失败率,与变分的贝叶斯推断相关的完整贝叶斯推断。
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
The task of reconstructing 3D human motion has wideranging applications. The gold standard Motion capture (MoCap) systems are accurate but inaccessible to the general public due to their cost, hardware and space constraints. In contrast, monocular human mesh recovery (HMR) methods are much more accessible than MoCap as they take single-view videos as inputs. Replacing the multi-view Mo- Cap systems with a monocular HMR method would break the current barriers to collecting accurate 3D motion thus making exciting applications like motion analysis and motiondriven animation accessible to the general public. However, performance of existing HMR methods degrade when the video contains challenging and dynamic motion that is not in existing MoCap datasets used for training. This reduces its appeal as dynamic motion is frequently the target in 3D motion recovery in the aforementioned applications. Our study aims to bridge the gap between monocular HMR and multi-view MoCap systems by leveraging information shared across multiple video instances of the same action. We introduce the Neural Motion (NeMo) field. It is optimized to represent the underlying 3D motions across a set of videos of the same action. Empirically, we show that NeMo can recover 3D motion in sports using videos from the Penn Action dataset, where NeMo outperforms existing HMR methods in terms of 2D keypoint detection. To further validate NeMo using 3D metrics, we collected a small MoCap dataset mimicking actions in Penn Action,and show that NeMo achieves better 3D reconstruction compared to various baselines.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译